

Microsoft T-SQL Performance Tuning

Part 1: Analyzing and Optimizing T-SQL Query Performance
on Microsoft SQL Server using SET and DBCC

By Kevin Kline

Contents
Introduction .. 3

SET STATISTIC IO ... 3

SET STATISTICS TIME .. 4

SET NOCOUNT ON ... 6

DBCC.. 6

DBCC SHOW_STATISTICS ... 6

TABLE AND INDEX FRAGMENTATION.. 8

DBCC SQLPERF.. 10

DBCC PROCCACHE ... 12

Summary ... 14

About the Author ... 14

About Quest Software ... 14

2

Microsoft T-SQL Performance Tuning
Part 1: Analyzing and Optimizing T-SQL Query Performance on Microsoft SQL
Server using SET and DBCC
By Kevin Kline

Introduction
This article is the first in a series that describes a variety of performance tuning techniques that you can
apply to your Microsoft SQL Server Transact-SQL programs. In many cases, you can use the graphical
user interface provided in Microsoft SQL Enterprise Manager or Microsoft SQL Query Analyzer to
achieve the same or similar results. However, this series focuses on using Transact-SQL as the basis for
our solutions. All examples and syntax are verified for Microsoft SQL Server 2000. Other articles in this
series cover topics like:
1. Datatype tuning

2. Tuning through database and table partitioning

3. Indexing strategies

4. Query optimizer strategies

5. SHOWPLAN output and analysis

6. Optimizer hints and Join techniques

7. Query tuning tips and tricks

SQL Server provides you with capabilities to benchmark transactions by sampling I/O activity and
elapsed execution time using certain SET and DBCC commands. In addition, some DBCC commands
may be used to obtain a very detailed explanation of any index statistic, estimate the cost of every
possible execution plan, and boost performance.

SET STATISTIC IO
The command SET STATISTICS IO ON forces SQL Server to report actual I/O activity on executed
transactions. It cannot be paired with SET NOEXEC ON option, because it only makes sense to monitor
I/O activity on commands that actually execute. Once the option is enabled every query produces
additional output that contains I/O statistics. In order to disable the option, execute SET STATISTICS IO
OFF. These commands also work on Sybase Adaptive Server, though some results sets may look
somewhat different.

For example, the following script obtains I/O statistics for a simple query counting rows of the
employees’ table in the northwind database:

SET STATISTICS IO ON
GO
SELECT COUNT(*) FROM employees
GO
SET STATISTICS IO OFF
GO

Results:

3

2977

Table 'Employees'. Scan count 1, logical reads 53, physical reads 0, read-ahead reads 0.

The scan count tells us the number of scans performed. Logical reads show the number of pages read
from the cache. Physical reads show the number of pages read from the disk. Read-ahead reads indicate
the number of pages placed in the cache in anticipation of future reads.

Additionally, we execute a system stored procedure to obtain table size statistics for our analysis:

sp_spaceused syscomments

Results:

name rows reserved data index_size unused
---------- ---- --------- ------- ----------- -------
Employees 2977 2008 KB 1504 KB 448 KB 56 KB

What can we tell by looking at this information?
• The query did not have to scan the whole table. The number of data in the table is more than 1.5 megabytes, yet

it took only 53 logical I/O operations to obtain the result. It indicates that the query has found an index that
could be used to compute the result, and scanning the index took fewer I/O than it would take to scan all data
pages.

• Index pages were mostly found in data cache since the physical reads value is zero. This is because we executed
the query shortly after other queries on employees and the table and its index were already cached. Your
mileage may vary.

• Microsoft has reported no read-ahead activity. In this case data and index pages were already cached. For a
table scan on a large table read-ahead would probably kick in and cache necessary pages before your query
requested them. Read-ahead turns on automatically when SQL Server determines that your transaction is
reading database pages sequentially and believes that it can predict which pages you’ll need next. A separate
SQL Server connection virtually runs ahead of your process and caches data pages for it. Configuration and
tuning of read-ahead parameters is beyond the scope of this book.

In this example, the query was executed as efficiently as possible. No further tuning is required.

SET STATISTICS TIME
Elapsed time of a transaction is a volatile measurement, since it depends on activity of other users on the
server. However, it provides some real measurement, compared to the number of data pages that doesn’t
mean anything to your users. They are concerned about seconds and minutes they spend waiting for a
query to come back, not about data caches and read-ahead efficiency. The SET STATISTICS TIME ON
command reports the actual elapsed time and CPU utilization for every query that follows. Executing SET
STATISTICS TIME OFF suppresses the option.

SET STATISTICS TIME ON
GO
SELECT COUNT(*) FROM titleauthors
GO
SET STATISTICS TIME OFF
GO

Results:

4

SQL Server Execution Times:
 cpu time = 0 ms. elapsed time = 8672 ms.
SQL Server Parse and Compile Time:
 cpu time = 10 ms.

25

(1 row(s) affected)

SQL Server Execution Times:
 cpu time = 0 ms. elapsed time = 10 ms.
SQL Server Parse and Compile Time:
 cpu time = 0 ms.

The first message reports a somewhat confusing elapsed time value of 8,672 milliseconds. This number is
not related to our script and indicates the amount of time that has passed since the previous command
execution. You may disregard this first message. It took SQL Server only 10 milliseconds to parse and
compile the query. It took 0 milliseconds to execute it (shown after the result of the query). What this
really means is that the duration of the query was too short to measure. The last message that reports parse
and compile time of 0 ms refers to the SET STATISTICS TIME OFF command (that’s what it took to
compile it). You may disregard this message since the most important messages in the output are
highlighted.

Note that elapsed and CPU time are shown in milliseconds. The numbers may vary on your computer (but
don’t try to compare your machine’s performance to our notebook PC’s, because this is not a
representative benchmark). Moreover, every time you execute this script you may get slightly different
statistics depending on what else your SQL Server was processing at the same time.

If you need to measure elapsed duration of a set of queries or a stored procedure, it may be more practical
to implement it programmatically (shown below). The reason is that the STATISICS TIME reports
duration of every single query and you have to add things up manually when you run multiple commands.
Imagine the size of the output and the amount of manual work in cases when you time a script that
executes a set of queries thousands of times in a loop!

Instead consider the following script to capture time before and after the transaction and report the total
duration in seconds (you may use milliseconds if you prefer):

DECLARE @start_time DATETIME
SELECT @start_time = GETDATE()
< any query or a script that you want to time, without a GO >
SELECT ‘Elapsed Time, sec’ = DATEDIFF(second, @start_time, GETDATE())
GO

If your script consists of several steps separated by GO, you can’t use a local variable to save the start
time. A variable is destroyed at the end of the step, defined by the GO command, where it was created.
But you can preserve start time in a temporary table like this:

CREATE TABLE #save_time (start_time DATETIME NOT NULL)
INSERT #save_time VALUES (GETDATE())
GO
< any script that you want to time (may include GO) >
GO
SELECT ‘Elapsed Time, sec’ = DATEDIFF(second, start_time, GETDATE())

5

FROM #save_time
DROP TABLE #save_time
GO

Remember that SQL Server’s DATETIME datatype stores time values in 3 millisecond increments. It is
impossible to get more granular time values than that using the DATETIME datatype.

SET NOCOUNT ON
This simple command is perhaps one of the single biggest performance boosts that you can add on to any
code. At its most obvious level, SET NOCOUNT ON turns of the N rows affected verbiage that appears at
the end of every query. More importantly, though, it also eliminates the DONE_IN_PROC internal
messaging sent from the server to the client for each step in a stored procedure. Since many stored
procedures need only return the messages that are explicitly put there by the programmer, this can provide
an enormous performance boost when placed as the first command in a stored procedure, trigger or
function. The syntax is simple:

SET NOCOUNT ON

Its behavior is disabled with the command SET NOCOUNT OFF.

DBCC
DBCC stands for Database Consistency Check and has many useful options. It is most famous (or
infamous) for its use by DBAs to check consistency of a database and look for database corruption using
commands like DBCC CHECKDB, DBCC NEWALLOC, DBCC CHECKCATALOG, and others. But
DBCC has many additional options, and some of them may be useful in your T-SQL programming work.

DBCC SHOW_STATISTICS
This command is very useful in analyzing index effectiveness. You can use this command to tell whether
the query optimizer can effectively use an index or not. It shows index statistics on a specified index of a
particular table. The syntax is:

DBCC SHOW_STATISTICS (table_name, index_name)

The output contains information about index density, which defines how many rows potentially have the
same key. For composite keys, the output contains information about partial keys consisting of the first
few columns of the index, as well as information for the whole key. The lower the value of the Density
reading the better, since this indicates higher selectivity.

You can say that index density is the opposite of selectivity. Selective indexes have low density. Indexes
with high density are not very selective and are unlikely to be used by the optimizer in query plans.
Example:

USE northwind
GO
DBCC SHOW_STATISTICS ([Order Details], OrderID)
GO

Results:

Statistics for INDEX 'OrderID'.
Updated Rows Rows Sampled Steps Density Average key length
-------------------- ----- ------------ ------ ------------ -------------------
Mar 26 2002 8:46AM 2155 2155 187 1.118621E-3 8.0

6

(1 row(s) affected)

All density Average Length Columns
------------------------ ------------------------ --------------------
1.2048193E-3 4.0 OrderID
1.2048193E-3 8.0 OrderID, ProductID

(2 row(s) affected)

RANGE_HI_KEY RANGE_ROWS EQ_ROWS DISTINCT_RANGE_ROWS AVG_RANGE_ROWS
------------ ---------- -------- -------------------- --------------
10248 0.0 3.0 0 0.0
10253 11.0 3.0 4 2.75
10256 7.0 2.0 2 3.5
…
11070 10.0 4.0 5 2.0
11075 9.0 3.0 4 2.25
11076 0.0 3.0 0 0.0
11077 0.0 25.0 0 0.0

(187 row(s) affected)

DBCC execution completed. If DBCC printed error messages, contact your system administrator.

If we multiply the number shown in the All density column above by the total number of rows, we can
determine how many rows have the same full key or partial key. In this example, a key consisting of
values for columns OrderID and ProductID provides an excellent selectivity: 0.00120483 * 2155 =
2.5963855915. Selectivity of one means that any key defined by these columns is associated with only
one row in the table – perfect selectivity. Other values returned by the DBCC command are useful as
well:

Value Returned Description
Updated The date and time the index statistics were last updated.
Rows The total number of rows in the table.
Rows Sampled The number of rows sampled for index statistics information.
Steps The number of distribution steps.
Density The selectivity of the first index column prefix.
Average key length The average length of the first index column prefix.
All density The selectivity of a set of index column prefixes.
Average length The average length of a set of index column prefixes.
Columns The names of index column prefixes for which All density and

Average length are displayed.
RANGE_HI_KEY The upper bound value of a histogram step.
RANGE_ROWS The number of rows from the sample that fall within a histogram step,

not counting the upper bound.
EQ_ROWS The number of rows from the sample that are equal in value to the

upper bound of the histogram step.
DISTINCT_RANGE_ROWS The number of distinct values within a histogram step, not counting

7

the upper bound.
AVG_RANGE_ROWS The average number of duplicate values within a histogram step, not

counting the upper bound (where RANGE_ROWS /
DISTINCT_RANGE_ROWS for DISTINCT_RANGE_ROWS > 0).

TABLE AND INDEX FRAGMENTATION
There are several commands available that can help you get a handle on table and index fragmentation:
DBCC SHOWCONTIG, DBCC INDEXDEFRAG, DBCC DBREINDEX, and CREATE/DROP INDEX.

Table fragmentation is similar to hard disk fragmentation that occurs on any computer after weeks of
creating, dropping, and modifying files. Database tables, just as disks, need defragmentation every so
often in order to stay efficient. The most efficient allocation is when all pages occupy a contiguous area in
the database, but after weeks of use, a table may become scattered across the disk drive. The more pieces
it is broken into, the less efficient the table becomes.

The DBCC SHOWCONTIG command helps you decide when to recreate a clustered index. It provides
information about table fragmentation and can also help you determine the right time to recreate clustered
indexes, thereby reducing table fragmentation.

The syntax of this DBCC command is

DBCC SHOWCONTIG (table [, index])

You may use either table name and index name, or table ID and index ID numbers. For example:

USE northwind
GO
DBCC SHOWCONTIG ([Order Details], OrderID)
GO

Results:

DBCC SHOWCONTIG scanning 'Order Details' table...
Table: 'Order Details' (325576198); index ID: 2, database ID: 6
LEAF level scan performed.
- Pages Scanned................................: 5
- Extents Scanned..............................: 2
- Extent Switches..............................: 1
- Avg. Pages per Extent........................: 2.5
- Scan Density [Best Count:Actual Count].......: 50.00% [1:2]
- Logical Scan Fragmentation: 0.00%
- Extent Scan Fragmentation: 50.00%
- Avg. Bytes Free per Page.....................: 2062.0
- Avg. Page Density (full).....................: 74.52%
DBCC execution completed. If DBCC printed error messages, contact your system administrator.

Statistics returned by the DBCC command are explained in the following table.

Statistics Description
Pages Scanned Number of database pages used by the table (when you specify indid

of 1 or 0) or a non-clustered index (when you specify indid > 1).
Extent Switches All pages of a table or an index are linked into a chain. Access to the

table or index is more efficient when all pages of each extent are

8

linked together into a segment of this chain. DBCC command scans the
chain of pages and counts the number of times it has to switch between
extents. If the number of extent switches exceeds the number of pages
divided by 8, then there is a room for optimization.

Avg. Pages per Extent Space for each table is reserved in extents of 8 pages. Some pages are
unused, because the table has never grown to use them or because
rows have been deleted from a page. The closer this number is to 8 –
the better. A lower number indicates that there are many unused pages
that decrease the performance of table access.

Scan Density [Best
Count: Actual Count]

Scan Density shows how contiguous the table is. The closer the
number is to 100% – the better. Anything less than 100% indicates
fragmentation.
Best Count shows the ideal number of extent switches that could be
achieved on this table.
Actual Count shows the actual number of extent switches.

Logical Scan
Fragmentation

The Percentage of out-of-order pages returned from scanning the leaf
pages of an index. This reading is not relevant for heaps (tables
without indexes of any kind) and text indexes. A page is considered
out of order when the next page in the Index Allocation Map (IAM) is
different than the page indicated by the next page pointer in the leaf
page.

Extent Scan
Fragmentation

Percentage of out-of-order extents in scanning the leaf pages of an
index, excluding heaps. An extent is considered out-of-order when the
extent containing the current index page is not physically next after the
extent holding the previous index page.

Avg. Bytes free per
page

The average number of free bytes per page used by the table or index.
The lower the number – the better. High numbers indicate inefficient
space usage. The highest possible number of free space is 2014 – the
size of a database page minus overhead. This or a close a number close
to this will be displayed for empty tables.
For tables with large rows this number may be relatively high even
after optimization. For example, if row size is 1005 bytes, then only
one row will fit per page. DBCC will report average free space also as
1005 bytes, but don’t expect another row to fit into the same page. In
order to fit a row of 1005 bytes you’d also need additional room for
row system overhead.

Avg. Page density (full) How full is an average page. Numbers close to 100% are better. This
number is tied to the previous one and depends on the row size as well
as on clustered index fill-factor. Transactions performed on table rows
change this number because they delete, insert or move rows around
by updating keys.

In order to defragment a table, drop and re-create a clustered index on it. Dropping and recreating the
clustered index, will also recreate all the non-clustered indexes on a table. Another method available to
defragment a table is found with the DBCC INDEXDEFRAG command. This command will reorder the
leaf level pages of the index in a logical order just as dropping and recreating the clustered index will.
However, DBCC INDEXDEFRAG offers some advantages. It is an online operation, keeping the index

9

and table available to other users while the command is running. It can also sustain an interruption
without loss of the work already completed. Its disadvantage is that it does not do as good a job of
reorganizing the data as a clustered index drop/re-create operation. The syntax for this command is:

DBCC INDEXDEFRAG
 ({ database | 0 } ,{ table | 'view' } ,{ index }
) [WITH NO_INFOMSGS]

When defining which database, table, view, or index you would like to defragment, you may use either
the name of the object or its object ID. (When using a zero instead of the database name or database ID,
the current database is assumed.) For example:

DBCC INDEXDEFRAG (Pubs, Authors, Aunmind)
GO

Results:

Pages Scanned Pages Moved Pages Removed
------------- ----------- -------------
359 346 8

(1 row(s) affected)

DBCC execution completed. If DBCC printed error messages, contact your system administrator.

Another command available to defragment tables and indexes is the DBCC DBREINDEX. Unlike DBCC
INDEXDEFRAG, this command locks the affected table and renders it unavailable to all other users while
the index is rebuilding. The syntax is:

DBCC DBREINDEX
 (['database.owner.table_name' [,index_name [,fillfactor]]]
) [WITH NO_INFOMSGS]

For example:

DBCC DBREINDEX (‘pubs.dbo.authors’)

If statistics are far from perfect, you can ask your DBA to rebuild clustered index on the table in order to
freshen it up. Even on tables that do not have a clustered index can benefit by creating a dummy one and
then dropping it.

Note that the operation may be very time-consuming on large tables and usually requires free space in the
database equal to 1.25 times the total size of data pages used by the table. Unfortunately, it may not be
feasible to rebuild indexes on large tables in critical production systems. You may often have to live with
fragmented tables or other methods to defragment them.

DBCC SQLPERF
DBCC SQLPERF can be used to obtain general SQL Server performance statistics. In SQL Server 2000,
only DBCC SQLPERF LOGSPACE is officially supported and maintained in the documentation.
However, additional keywords allowed in earlier versions of SQL Server are still working. These same
parameters can also be tracked in real time using the SQL Server Performance Monitor. The syntax of the
command follows:

DBCC SQLPERF ({IOSTATS | LRUSTATS | NETSTATS | RASTATS [, CLEAR]} | {THREADS} | {LOGSPACE})

10

SQLPERF options and their results are explained below:

IOSTATS
Reports I/O usage since the server was started or since these statistics were cleared. The closer these
values are to zero, the better. Example results:

Statistic Value
------------------- ------
Reads Outstanding 0.0
Writes Outstanding 1.0

LRUSTATS
Reports cache usage since the server was started or since these statistics were cleared. LRU is Least
Recently Used. Cache Hit Ratio is the single most important performance value in this group and
indicates better results the closer it is to 100. (See DBCC PROCCACHE below for a similar command.)
Example results:

Statistic Value
-------------------------------- ------------------------
Cache Hit Ratio 99.875603
Cache Flushes 0.0
Free Page Scan (Avg) 0.0
Free Page Scan (Max) 0.0
Min Free Buffers 331.0
Cache Size 4362.0
Free Buffers 22.0

NETSTATS
Reports network usage. Example results:

Statistic Value
-------------------------------- ------------------------
Network Reads 243.0
Network Writes 244.0
Network Bytes Read 38328.0
Network Bytes Written 88446.0
Command Queue Length 0.0
Max Command Queue Length 0.0
Worker Threads 0.0
Max Worker Threads 0.0
Network Threads 0.0
Max Network Threads 0.0

RASTATS
Reports Read Ahead usage. Example results:

Statistic Value
-------------------------------- ------------------------
RA Pages Found in Cache 0.0
RA Pages Placed in Cache 0.0
RA Physical IO 0.0
Used Slots 0.0

CLEAR
This option is used in conjunction with one of the four discussed above. Clears the specified statistics and
restarts generation of statistics. This option generates no output.

11

THREADS
Maps the Windows NT system thread ID to a SQL Server spid. The output is very similar to that of the
system stored procedure SP_WHO and contains the login name, physical and logical (reported as CPU)
I/O activity, and memory usage statistics. Example results:

Spid Thread ID Status LoginName IO CPU MemUsage
------ ----------- ---------- ---------- ---------------------- ----------- -----------
1 NULL background NULL 0 0 0
2 NULL sleeping NULL 0 0 0
3 NULL background NULL 0 0 5
4 NULL background NULL 0 0 -6
5 0 background sa 6 0 2
6 0 background sa 0 0 2
7 NULL sleeping NULL 0 0 0
8 0 background sa 0 0 2
9 0 background sa 0 0 2
10 0 background sa 0 0 2
11 0 background sa 0 0 2
12 0 background sa 0 0 2
51 0 sleeping CORPORATE\ 116 40 124
52 2828 runnable CORPORATE\ 276 220 68
53 0 sleeping CORPORATE\ 48 200 102

LOGSPACE
Reports the percentage of transaction log space used. This option can only be used if transaction log is
located on its own database segment. Example results:

Database Name Log Size (MB) Log Space Used (%) Status
-------------- ------------- ------------------ -----------
master 0.4921875 64.186508 0
tempdb 0.4921875 51.578388 0
model 0.4921875 45.436508 0
msdb 2.2421875 31.685539 0
pubs 1.7421875 43.049328 0
Northwind 0.9921875 41.235928 0

In most cases, we recommend that you use SQL Performance Monitor to collect this information. It is
easier to log-on to a file and provides visual comparisons of performance over time. SQL Performance
Monitor also provides an explanation for each performance monitor result. However, if you are interested
in a snapshot of a particular performance issue, then DBCC SQLPERF may come handy.

DBCC PROCCACHE
In earlier versions of SQL Server, the data cache and procedure cache could be tuned separately. The
data cache was that area of the memory cache where data pages were stored for quick access while the
procedure cache was used to hold query plans and compiled stored procedures execution plans. In SQL
Server 2000, you cannot tune these areas of the memory cache separately since SQL Server now handles
all aspects of this automatically. However, you can check up on the state of affairs in the procedure cache
using the command DBCC PROCCACHE.

The syntax is:

DBCC PROCCACHE

The results are returned in a long string with values explained in the table below:

12

Column Name Description
num proc buffs The number of stored procedures that could possibly be in the procedure cache.
num proc buffs used The number of slots in the cache holding stored procedures.
num proc buffs active The number of slots in the cache holding stored procedures that are executing.
proc cache size The total size of the procedure cache.
proc cache used The amount of the procedure cache holding stored procedures.
proc cache active The amount of the procedure cache holding stored procedures that are executing.

HINT: If you are anxious to find every last detail of server performance, SQL Server
2000 still returns valid data for the command DBCC MEMUSAGE even though it claims
not to support the command any more. This command tells you the top 20 space
consuming objects in the memory cache. Of course, it is highly advisable not to code any
solutions around DBCC MEMUSAGE since it might not be around tomorrow, but you
might have fun playing with the command.

DBCC PINTABLE
Retrieving data from cache significantly increases performance rather than retrieving data from disk. The
speed of memory cache I/O is based on the lightning fast speed of electrons while the speed of disk is
limited to the actual movement of gears and electronic motors. You have the option of forcing SQL
Server to pin a table in memory, ensuring that its pages are not flushed from memory. Syntax:

DBCC PINTABLE(database_id, table_id)

This command requires that you use the ID of the database and table. If you don’t happen to know the
database and/or table ID (which I seldom do), you can use the DB_ID function and OBJECT_ID function,
respectively, in a query to find out the values. The example below shows this usage:

DECLARE @db INT, @obj INT
SELECT @db = DB_ID('northwind'),
 @obj = OBJECT_ID('northwind..employees')
DBCC PINTABLE (@db, @obj)

This command should not be used lightly though, as the results point out:

Warning: Pinning tables should be carefully considered. If a pinned table is larger, or grows
larger, than the available data cache, the server may need to be restarted and the table
unpinned.

DBCC execution completed. If DBCC printed error messages, contact your system administrator.

The command does not actually read a table into the memory cache. Instead, it ensures that pages from
the table are retained in cache once read. (You could couple this command immediately with a SELECT
statement to read the table directly into memory.) This command has a dark side – it does not flush the
pages of a pinned table, even when it needs the space in the memory cache very badly. This can be
especially bad if the pinned table is very large. Consequently, this command should be used only on
small, frequently used tables such as lookup tables. Use the command DBCC UNPINTABLE to release
the pages from memory cache.

13

Summary
In this article, we discussed various T-SQL discovery, optimization and tuning techniques using the SET
and DBCC commands. SQL Server performance is a composite of many factors. And while T-SQL
programming is only one of aspect, it is a very important one. In this article, we focused on the following
commands:

• SET STATISTICS IO

• SET STATISTICS TIME

• SET NOCOUNT ON

• DBCC SHOW_STATISTICS

• DBCC SHOWCONTIG

• DBCC INDEXDEFRAG

• DBCC DBREINDEX

• DBCC SQLPERF

• DBCC PROCCACHE

• DBCC PINTABLE

Future articles in this series will discuss database design tips, indexing strategies, analyzing the query
plan of queries, optimizer hints, and cool programming tips and tricks that provide the added oomph to T-
SQL programs.

About the Author
Kevin Kline serves as Senior Product Architect for SQL Server at Quest Software designing products for
DBAs and database developers. Kevin is author of four books, including the very popular "SQL in a
Nutshell" and "Transact-SQL Programming" both published by O'Reilly & Associates
(www.oreilly.com), and numerous magazine and on-line articles. Kevin is also active in the SQL Server
community, serving as Executive Vice President of the Professional Association for SQL Server
(www.sqlpass.org). When he's not spending time on database technology, Kevin enjoys spending time
with his wife & four children, practicing classical guitar (very badly), and gardening.

About Quest Software
Quest Software, Inc. is a leading provider of application management solutions. Our products increase
the performance and uptime of business-critical applications while driving down the total cost associated
with running those applications. By focusing on both the people and technology that make applications
run, Quest Software enables IT professionals to achieve more with fewer resources. Quest Software is
based in Irvine, California and has offices around the globe. For more information, visit www.quest.com.

Material adapted from "Transact-SQL Programming" (O'Reilly & Associates, ISBN: 1565924010) by Kevin Kline,
Lee Gould, and Andrew Zanevsky, http://www.oreilly.com/catalog/wintrnssql/.

14

http://www.oreilly.com/
http://www.sqlpass.org/
http://www.quest.com/
http://www.oreilly.com/catalog/wintrnssql/

	Introduction
	SET STATISTIC IO
	SET STATISTICS TIME
	SET NOCOUNT ON
	
	DBCC
	DBCC SHOW_STATISTICS

	TABLE AND INDEX FRAGMENTATION
	DBCC SQLPERF
	DBCC PROCCACHE
	Summary
	About the Author
	About Quest Software

